Ref No:

Sri Krishna Institute of Technology, Bengaluru-560090

COURSE PLAN

Academic Year - 2019-2020

Academic Evaluation and Monitoring Cell

Program:	BE- Electrical and Electronics Engineering
Semester:	3
Course Code:	18EEL38
Course Title:	Electronics Laboratory
Credit/L-T-P:	2 / 0-2-2
Total Contact Hours:	40
Course Plan Author:	Avinash S

#29, Hesaragatta Main Road, Chimney Hills Chikkabanavara Post Bengaluru – 560090, Karnataka, India Phone / Fax :080-23721477/28392221/23721315 Web: www.skit.org, e-mail:

A. LABORATORY INFORMATION	4
1. Laboratory Overview	4
2. Laboratory Content	4
3. Laboratory Material	
4. Laboratory Prerequisites:	5
5. Content for Placement, Profession, HE and GATE	5
B. Laboratory Instructions	6
1. General Instructions	6
2. Laboratory Specific Instructions	6
C. OBE PARAMETERS	6
1. Laboratory Outcomes	6
2. Laboratory Applications	7
3. Mapping And Justification	
4. Articulation Matrix	8
5. Curricular Gap and Experiments	9
6. Experiments Beyond Syllabus	9
D. COURSE ASSESSMENT	
1. Laboratory Coverage	
2. Continuous Internal Assessment (CIA)	
E. EXPERIMENTS	11
Experiment 01 : Structure of C program	
Experiment 02 : Keywords and identifiers	
Experiment 03 :	
Experiment 04 :	
F. Content to Experiment Outcomes	14
1. TLPA Parameters	
2. Concepts and Outcomes:	

INSTRUCTIONS TO TEACHERS

- Classroom / Lab activity shall be started after taking attendance.
- Attendance shall only be signed in the classroom by students.
- Three hours attendance should be given to each Lab.
- Use only Blue or Black Pen to fill the attendance.
- Attendance shall be updated on-line & status discussed in DUGC.
- No attendance should be added to late comers.
- Modification of any attendance, over writings, etc is strictly prohibited.
- Updated register is to be brought to every academic review meeting as per the COE.

Note : Remove "Table of Content" before including in CP Book

18EEL38 : ELECTRONICS LABORATORY

A. LABORATORY INFORMATION

1. Lab Overview

Degree:	B.Tech	Program:	EE
Year / Semester :	2/3	Academic Year:	2019
Course Title:	Electronics Laboratory	Course Code:	18EEL38
Credit / L-T-P:	2 / 0-2-2	SEE Duration:	180 Minutes
Total Contact Hours:	40Hrs	SEE Marks:	60 Marks
CIA Marks:	40	Assignment	1 / Module
Course Plan Author:	Mr. Avinash S	Sign	Dt :
Checked By:		Sign	Dt :

2. Lab Content

Unit	Title of the Experiments	Lab	Concept	Blooms
		Hours		Level
1	Design and Testing of Full wave – centre tapped transformer type and Bridge type rectifier circuits withand without Capacitor filter. Determination of ripple factor, regulation and efficiency.	3	Rectification	L5
2	Static Transistor characteristics for CE, CB and CC modes and determination of h parameters.	3	Characteristic s	L3
3	Frequency response of single stage BJT and FET RC coupled amplifier and determination of half power points, bandwidth, input and output impedances.	3	Frequency Response	L4
4	Design and testing of BJT - RC phase shift oscillator for given frequency of oscillation.	3	Signal Generation	L5
5	Determination of gain, input and output impedance of BJT Darlington emitter follower with and without bootstrapping	3	Small signal analyses of Darlington emitter follower	L3
6	Simplification, realization of Boolean expressions using logic gates/Universal gates.	3	Realization	L3
7	Realization of half/Full adder and Half/Full Sub tractors using logic gates	3	Realization	L3
8	Realization of parallel adder/Sub tractors using 7483 chip- BCD to Excess-3 code conversion and Vice - Versa.	3	Realization	L3
9	Realization of Binary to Gray code conversion and vice versa	3	Realization	L3
10	Design and testing Ring counter/Johnson counter	3	Counter Design	L5
11	Design and testing of Sequence generator	3	Sequence generator	L5
12	Realization of 3 bit counters as a sequential circuit and MOD – N counter design using 7476, 7490, 74192, 74193	3	MOD – N Counter Design	L5

3. Lab Material

Unit	Details	Available
1	Text books	

	Digital Logic Applications and Design by John M Yarbrough & Donald D	In Lib
	Givone.Electronic Devices and CircuitTheory by Robert L Boylestad Louis	
	Nashelsky & Electronic Devices and Circuits by David A Bell	
	Nashelský a Llectronic Devices and Circuits by David A Bett.	
2	Reference books	
	Logic and computer design Fundamentals by M. Morries Mano and Charles Kime, Fundamentals of logic design byCharles H Roth, JR and Larry L. Kinney, Fundamentals of Digital Circuits by A. Anand Kumar, A Text Book of Electrical Technology, Electronic Devices and Circuits by B.L. Theraja, A.K. Theraja, Electronic Devices and Circuits by Anil K. Maini VashaAgarval & Fundamentals of Analog Circuits by Thomas L Floyd.	In dept
3	Others (Web, Video, Simulation, Notes etc.)	
		Not Available

4. Lab Prerequisites:

-	-	Base Course:		-	-
SNo	Course	Course Name	Topic / Description	Sem	Remarks
	Code				
1	17ELN24	Basic Electronics	1. Knowledge Digital Electronics	2	
			Fundamentals		

Note: If prerequisites are not taught earlier, GAP in curriculum needs to be addressed. Include in Remarks and implement in B.5.

5. General Instructions

SNo	Instructions	Remarks
1	Keep the lab neatly. Maintain silence.	
2	Maintain your lab observation and lab manual.	
3	Prepare your experiment in well advance.	
4	Check the power supply before use.	
5	Maintain discipline in the lab.	
6	After completion of your experiment switch off the power supply.	
7	Observation book and Lab record are compulsory.	
8	Students should report to the concerned lab as per the time table.	
9	After completion of the experiment, certification of the concerned staff in-	
	charge in the observation book is necessary.	
10	Student should bring a notebook of 100 pages and should enter the	
	readings /observations into the notebook while performing the experiment.	

6. Lab Specific Instructions

SNo	Specific Instructions	Remarks
1	Students are expected to study the circuit, theory and procedures,	
	expected output before doing the experiment.	
2	Adjustment of signal generator: - Before connecting the signal generator to	
	the circuit check the followings.	
	a. Set the shape of the waveform (sinusoidal),	
	b. Set the frequency using coarse and fine adjustments.	
	c. Set the offset adjustments. Set the CRO in DC mode and ensure the	
	waveform is symmetry in both positive and negative cycle. If not , adjust it	
	using the DC offsetting potentiometer	
	d. Set the voltage magnitude using Vcourse settings and Vfine adjustments.	
3	Adjustment of CRO:	
	a. Select the right voltage and time scale to get the proper waveform	
	b. For clipper and clamper circuits, observe the waveform in DC mode only	
	c. Set the input waveform mainly for offset setting in DC mode only.	
	d. Before measurement, ensure X & Y are in calibrated mode (if provided	
	externally)	
	e. Ensure that Channel selection and trigger mode are properly set.	

LADOI	DE 3 EE 3 N	1 1 11301 1 02 1 2.2
	f. In case of two channels do not mix the signal and ground terminals	
4	Multi-meter adjustments:-	
	a. Set the right mode before taking the readings.	
	b. For current reading, connect the multimeter in mA (or A) mode to the	
	circuit before switching on the supply. Do not remove the current meter	
	when the supply is on. Check for ac and dc modes as required.	
	c. For voltage reading ensure that proper ac or dc setting.	
	d. Use the proper leads for the measurement. Wrong cables damage the	
	instrument.	
5	After adjusting the input voltage, check the circuit connections before	
	turning the power on.	
6	After adjusting the input voltage, check the circuit connections before	
	turning the power on.	
7	Don't pull out the connections with the power supply on.	
8	Wear your College ID card Do not operate the IC trainer kits without	
	permission	
9	Avoid loose connection and short circuits	
10	Do not interchange the ICs while doing the experiment	
11	Handle the trainer kit properly	
12	Do not panic if you do not get the output	
13	After completion of the experiment switch off the power and return the	
	components	

B. OBE PARAMETERS

1. Lab / Course Outcomes

#	COs	Teach.	Concept	Instr	Assessment	Blooms'
		Hours		Method	Method	Level
1	Design & Analyses of Full wave Rectifiers	03	Rectification	Conduct	Test & Viva	L5
	using hardware components			ion	Voce	
2	Determine Characteristic of CE, CB & CC	03	Characteristic	Conduct	Test & Viva	L3
	modes of h parameters using hardware		S	ion	Voce	
	components					
3	Analyze the frequency response of BJT &	03	Frequency	Conduct	Test & Viva	L4
	FET using using hardware components		Response	ion	Voce	
4	Analyses & Design of BJT-RC phase shift	03	Signal	Conduct	Test & Viva	L5
	of oscillator for given fequency using		Generation	ion	Voce	
	using hardware components					
5	Determine the gain, i/p & o/p of BJT	03	Small signal	Conduct	Test & Viva	L3
	using hardware components		analyses of	Ion	voce	
			Dartington			
			followor			
6	Pealize the Boolean expression with their	02	Pealization	Conduct	Tost & Viva	10
0	truth table using LD trainer kit	03	Realization	ion		LS
7	Realize the Adders & Substractors with	03	Realization	Conduct	Test & Viva	13
	their truth table using LD trainer kit.	03	Realization	ion	Voce	L)
8	Realize the parallel adder/Subtractors	03	Realization	Conduct	Test & Viva	L3
	with their truth table using LD trainer kit.			ion	Voce	0
9	Realize the Binary to Gray code & vice	03	Realization	Conduct	Test & Viva	L3
	versa using LD trainer kit.	_		ion	Voce	_
10	Design & Realize the Ring & Jogn counter	03	Counter	Conduct	Test & Viva	L5
	using LD trainer kit.		Design	ion	Voce	
11	Design & Realize the Sequence generator	03	Sequence	Conduct	Test & Viva	L5
	using LD trainer kit.		generator	ion	Voce	
12	Design & Realize the MOD – N Counter	03	MOD – N	Conduct	Test & Viva	L5
	Design using LD trainer kit.		Counter	ion	Voce	
			Design			
-	Total	36	-	-	-	-

Copyright ©2017. cAAS. All rights reserved.

2. Lab Applications

SNo	Application Area	CO	Level
1	The full wave rectifier circuit is one that is widely used for power supplies and many other areas where a full wave rectification is required. The full wave rectifier	CO1	L5
	circuit is used in most rectifier applications because of the advantages it offers.		
2	CE - common emitter : most commonly used in general purpose amplifier designs. It provides high gain and high input impedance. The drawbacks with this simple configuration are limited bandwidth due to Miller effect of collector-base capacitance and limited load driving capability due to high output impedance. CE is also used in digital (large signal) designs as switching stage. CC - common collector : commonly used as unity gain buffer and sometimes called emitter follower. It provides high input impedance, low output impedance and high bandwidth. Perfect for driving heavy loads. The drawback is no gain; gain is close to but less than one. Therefore, it is typically used in conjunction with an amplifier and not instead of an amplifier. CC is also used as a voltage translation stage. CB - common base : commonly used as a cascode stage to isolate output voltage signal from feeding back to input eliminating Miller effect from amplifier to increase bandwidth. It provide low input impedance and close to unity current gain. It is not typically used as a standalone amplifier due to low input impedance. CB is also used to increase output impedance of current sources to increase gain.	CO2	L3
3	FETs are widely used as input amplifiers in oscilloscopes, electronic voltmeters and other measuring and testing equipment because of their high input impedance	CO3	L4
4	RC Phase Shift Oscillators are used in musical instruments, voice synthesis and in GPS units since they work at all audio frequencies.	CO4	L5
5	The bipolar junction transistor (BJT) is used in logic circuits. The BJT is used as an oscillator. It is used as an amplifier.	CO5	L3
6	Used to simplify the expressions.	CO6	L3
7	Adders & Subtractors are wildly used in in computer's ALU (Arithmetic logic unit) to compute addition as well as CPU (Central Processing unit) and GPU (Graphics Processing unit) for graphics applications to reduce the circuitcomplexity. Adder and subtractor are basically used for performing arithmetical functions like addition, subtraction, multiplication and division in electronic calculators and digital instruments. Adders are used in digital calculators for arithmetic addition and devises that uses some kind of increment or arithmetic process They are also used in microcontrollers for arithmetic additions, PC (program counter) and timers.	CO7	L3
8	Parallel adder is basically used in binary digit bit to add multiple n - bits in it. So mean while it act like auxiliary full adder. While, parallel subtractor is deduction of n-bits form binary digit.	CO8	L3
9	Gray code has property that two successive numbers differ in only one bit because of this property gray code does the cycling through various states with minimal effort and used in K-maps, error correction, communication etc.	CO9	L3
10	Used for decimal arithmetic in computers and calculators.	CO10	L5
11	The sequence generator is used to generate primary key values & it's used to generate numeric sequence values like 1, 2, 3, 4, 5 etc	CO11	L5
12	The main application of counter is to count events , and each event is converted in to one clock cycle. That means counter is used to count number of clocks.	CO12	L5

Note: Write 1 or 2 applications per CO.

3. Articulation Matrix

(CO – PO MAPPING)

-

LABORATORY	PLAN - CAY 2019						В	E-5-E	E-SK	IT-Ph	15b1-F	-02-V	2.2	
#	COs	PO1	PO	PO	PO	PO	PO	PO	PO	PO	PO1	PO1	PO1	Level
			2	3	4	5	6	7	8	9	0	1	2	
18EEL38.1	Design & Analyses of Full wave	2.71	2.71	3								2.92		L5
	Rectifiers using hardware													
	components													
18EEL38.2	Determine Characteristic of CE, CB	2.71	2.71											L3
	& CC modes of h parameters													
	using hardware components													
18EEL38.3	Analyze the frequency response	2.71	2.71									2.92		L4
	of BJI & FEI using using													
	hardware components													
18EEL38.4	Analyses & Design of BJT-RC	2.71	2.71	3								2.92		L5
	phase shift of oscillator for given													
	components													
1855L 28 5	Dotorming the gain i/n & g/n of	2 71	2 71											10
1022230.5	B IT using hardware components	2./1	Z./1											LS
18FEL 38.6	Realize the Boolean expression	2 71	2 71											13
1022230.0	with their truth table using LD	2.71	<u> </u>											23
	trainer kit.													
18EEL38.7	Realize the Adders & Substractors	2.71	2.71											L3
	with their truth table using LD													-
	trainer kit.													
18EEL38.8	Realize the parallel adder/Sub	2.71	2.71											L3
	tractors and BCD to Excess-3													
	code conversion with their truth													
	table using LD trainer kit.													
18EEL38.9	Realize the Binary to Gray code &	2.71	2.71											L3
	vice versa using LD trainer kit.													
18EEL38.10	Design & Realize the Ring & Jogn	2.71	2.71	Х								2.92		L5
	counter using LD trainer kit.													
18EEL38.11	Design & Realize the Sequence	2.71	2.71	3								2.92		L5
	generator using LD trainer kit.	0.74	0.74											
18EEL38.12	Design & Realize the MOD - N	2.71	2.71	3								2.92		L5
	Lounter Design using LD trainer													
18FFI 28	Average													
TOLLEJO.	, weitage													

Note: Mention the mapping strength as 1, 2, or 3

4. Mapping Justification

Марріі	Mapping Mapping		Justification
		Level	
СО	PO	-	-
CO1	PO1	L1	
CO1	PO2	L3	
CO1	PO5		

Note: Write justification for each CO-PO mapping.

5. Curricular Gap and Content

SNo	Gap Topic	Actions Planned	Schedule Planned	Resources Person	PO Mapping
1					
2					

Note: Write Gap topics from A.4 and add others also.

6. Content Beyond Syllabus

SNo	Gap Topic	Actions Planned	Schedule Planned	Resources Person	PO Mapping
1					
2					

Note: Anything not covered above is included here.

C. COURSE ASSESSMENT

1. Course Coverage

Unit	Title	Теа		Nc	o. of c	questio	on in Ex	kam		CO	Lev
		chin	CIA-	CIA-	CIA-	Asg-1	Asg-2	Asg-3	SE		els
		g	1	2	3				Е		
		Hou									
- 1	Decian and Testing of Full ways control	rs	1						1	CO1	
1	tapped transformer type and Bridge type	03	L I	-	-	-	_	-	T	COI	L5
	rectifier circuits withand without Capacitor										
	filter. Determination of ripple factor, regulation										
	and efficiency.										
2	Static Transistor characteristics for CE, CB and	03	1	-	-	-	-	-	1	CO2	L3
	CC modes and determination of h parameters.										
3	Frequency response of single stage BJT and F	E@3R	C 1	-	-	-	-	-	1	CO3	L4
	coupled amplifier and determination of half po	wer p	oints	,							
	Danawidth, input and output impedances.	llato	for	iivon					1	CO1	
4	frequency of oscillation	ແຜ່ເຮັກ		JIVEII	-	-	-	-	T	004	L2
5	Determination of gain, input and output imped	anoge	of1B_	IT -	-	-	-	-	1	CO5	L3
	Darlington emitter follower with and without be	potst	rappi	ng							
6	Simplification, realization of Boolean expressio	กเธายร	ina	-	-	-	_	_	1	CO6	L3
	logic gates/Universal gates.	- 3 -							_		
7	Realization of half/Full adder and Half/Full	Sgb	t∎ac	to r s	นร่าง	g -	-	-	1	C07	L3
	logic gates										
8	Realization of parallel adder/Sub tractors us	inog ,	7483	chip	- BCI	Dtol	Excess	-3 eode	9 1	CO8	L3
	conversion and Vice - Versa.	- 1								001	
9	Realization of Binary to Gray code conversion a	anuog∨	ice v	ersta	-	-	-	-	1	009	L3
10	Design and testing Ring counter/Johnson cou	ntœg	-	1	-	-	-	-	1	CO10	L5
11	Design and testing of Sequence generator	03	_	1	_	_	_	_	1	C.O11	15
		05		-					-	0011	
12	Realization of 3 bit counters as a sequential cir	cwißa	nd M	OD -	N	-	-	-	1	CO12	L5
	counter design using 7476, 7490, 74192, 74193										
	_										
-	Total	36								-	-

Note: Write CO based on the theory course.

2. Continuous Internal Assessment (CIA)

Evaluation	Weightage in Marks	СО	Levels
CIA Exam – 1	30	CO1, CO2, CO3, CO4	L23, L3
CIA Exam – 2	30	CO5, CO6, CO7,	L1, L2, L3
CIA Exam – 3	30	CO8, CO9	L1, L2, L3
Assignment - 1	05	CO1, CO2, CO3, CO4	L2, L3, L4
Assignment - 2	05	CO5, CO6, CO7, CO8, CO9	L1, L2, L3
Assignment - 3	05	CO8, CO9	L1, L2, L3
Seminar - 1	05	CO1, CO2, CO3, CO4	L2, L3, L4
Seminar - 2	05	CO5, CO6,CO7,CO8, CO9	L2, L3, L4
Seminar - 3	05	CO8, CO9	L2, L3, L4
Other Activities – define – Slip test		CO1 to Co9	L2, L3, L4

LABOR	ATORY PLAN - CAY 2019		BE-5-EE-SKIT-Ph5b1-F02-V2.2						
F	Final CIA Marks	40	-	-					
SNo		Marks							
	Observation and We	05 Marks							
2	Record Writing	10 Marks for each Expt							
3	Internal Exam Asses	25 Marks							
4	Internal Assessment	40 Marks							
5	SEE	60 Marks							
-	Total 100 Marks								

D. EXPERIMENTS

Experiment 01 : Structure of C program

.AB(ORATORY PLAN - CAY 2019	Э				BE-5-EE-	SKIT-Ph5b1-F02	2-V2.2
#	Experiment No.:	1	Marks		Date		Date	
					Planned		Conducted	
1	Title	De	sign and Te	sting of Ful	l wave – ce	entre tappe	d transform	er type and
		Bri	dge type	rectifier c	ircuits with	n and wit	hout Capa	citor filter.
		De	termination	of ripple fac	tor, regulatio	on and efficie	ency.	
2	Course Outcomes	De	sign & Analy	ses of Full wa	ave Rectifiers	s using hardv	vare compor	nents
3	Aim	De	sign and tes	sting of Full	wave and b	ridge type r	rectifier circu	its with and
		wit	hout capacit	or and to det	ermine ripple	e factor, regu	ulation and et	fficiency
4	Material /	'Lak	o Manual/ C	RO, Signal g	enerator, cap	bacitor, diode	es, power ch	ord, ameter,
	Equipment Required	mu	ılti-meter, st	epdown tran	sformer.			
5	Theory, Formula	,The	e conversior	n of AC into	pulsating [DC is called	Rectificatio	n. Electronic
	Principle, Concept	De	vices can co	onvert AC po	wer into DC	power with	high efficien	icy. The full-
		wa	ve rectifier c	onsists of a o	center-tappe	d transform	er, which res	sults in equal
		vol	tages above	e and below	the center-t	ap. During t	he positive	half cycle, a
		pos	sitive voltage	e appears at	the anode of	D1 while a r	negative volt	age appears
		at t	he anode of	⁻ D2. Due to t	his diode D1	is forward b	iased. It resu	ults a current

ld1 through the load R. During the negative half cycle, a positive voltage appears at the anode of D2 and hence it is forward biased, resulting a current Id2 through the load. At the same instant a negative voltage appears at the anode of D1, reverse biasing it and hence it doesn't conduct.

Procedure, Program, step 1: Rig up the circuit as per the circuit diagram shown.(without Activity, Algorithm, filter) Pseudo Code step 2:Switch ON the multimeter in DC mode & Switch ON the Power supply and measure Vdc and Idc step 3: Now switch OFF the power supply & switch the multimeter in AC mode and switch ON the power supply to measure Vac and Iac. Calculate efficiency and Ripplefactor step 4:Rig up the circuit as per the circuit diagram shown.(with filter) step 5:Switch on the Power Supply and switch the multimeter in DC mode to measure Vdc and Idc step 6:Now switch the multimeter in AC mode and measure Iac step 7:Measure Vr(p-p) from CRO and calculate Vrms, efficiency and

7	Block, Circuit, Model Diagram, Reaction Equation, Expected Graph	St Tn AC (230V/50HZ)	ep down ansformer 12V 0 12V	An (0-2) BY127 + BY127 + A K	nmeter 250mA) A RL	C2 -!(0.10F 0 (DC)	V₀ (AC)	AC (230V/50HZ	Transformer	(0-250mA) BY127 BY127 C1 T RU 4700F	C2
8	Observation Table,	Withou	ıt Filter								
	Look-up Table, Output	SINO	RL Ω	Iode ma	Vodc volts	Vinrms volts	Voac volts	Ioac ma	RIPPLE γ	EFFICIENCY η	REGULATION
		With F	llter								

with I h											
SINO	RL	Iode	Vodc	Vinrms	Voac	Ioac	RIPPLE	EFFICIENCY	REGULATIO		
	Ω	ma	volts	volts	volts	ma	γ	η			

9	Sample Calculations	Without filter: Let Vinrms = 12V
		Vodc = 2Vm/π = 10.8v = 10v
		lodc = 100 mA

Ripplefactor.

6

LABC	DRATORY PLAN - CAY 2019	BE-5-EE-SKIT-Ph5b1-F02-V2.2
		RL (min) = Vodc/Iodc = 100Ω Let Rf = 10Ω Iorms = $\sqrt{Ioac^2+Iodc^2}$ With filter:Let Ripple = γ = Vorms /Vodc = 0.48 Let γ =6%=0.06, F = 50HZ and RL = 100 Ω WKT γ = 1/4 $\sqrt{3}$ F C RL C = 470mF Ripple factor = Voac/Vodc %Efficiency = Iodc ² RL/Iorms ² (Rf+RL) %Regulation = (VNL-VFL)/VFL
10	Graphs, Outputs	Yin LP Wave Form Ya O'P Withbout C-Filter Mg O'P With C-Filter
11	Results & Analysis	Calculated the ripple factor, regulation and efficiency of Rectifiers (with and witout capacitors)
12	Application Areas	The full wave rectifier circuit is one that is widely used for power supplies and many other areas where a full wave rectification is required. The full wave rectifier circuit is used in most rectifier applications because of the advantages it offers.
13	Remarks	
14	Faculty Signature with Date	

Experiment 02 : Keywords and identifiers

-	Experiment No.:	3	Marks		Date Planned		Date Conducted	
1	Title	Freq	uency respo	nse of singl	e stage BJT	and FET R	C coupled ar	nplifier and
		dete	rmination	of half po	ower points	, bandwidt	h, input a	nd output
2	Course Outcomes	Analy	ze the fre	equency res	ponse of E	BJT & FET	using using	g hardware
3	Aim	To d	esign a RC-	coupled Sing	gle Stage B.	JT amplifier	and determin	ne it's Gain-
4	Material/Equipme nt Required	Lab I multi	Lab Manual/ CRO, Signal generator, capacitor, diodes, power chord, ameter, multi-meter.					
5	Theory, Formula Principle, Concept	This is most popular type of coupling as it provides excellent audio fidelity. A coupling capacitor is used to connect output of first stage to input of second stage. Resistances R1, R2, Re form biasing and stabilization network. Emitter bypass capacitor offers low reactance paths to signal coupling Capacitor transmits ac signal, blocks DC. Cascade stages amplify signal and overall gain is increased total gain is less than product of gains of individual stages. Thus for more gain coupling is done and overall gain of two stages equals to A = A1*A2 A1 = voltage gain of first stage, A2 = voltage gain of second stage. When ac signal is applied to the base of the transistor, its amplified output appears across the collector resistor Rc. It is given to the second stage for further amplification and signal appears with more strength. Frequency response curve is obtained by plotting a graph between frequency and gain in db. The gain is constant in mid frequency range and gain decreases on both sides of the mid frequency						
		Cc ar	nd at high fre	equencies du	e to junction	capacitance	Cbe.	5 1
6	Procedure, Program, Activity Algorithm, Pseudc Code	a) To plot Frequency response: (1.Rig up the circuit as per the given circuit diagram. 2.Switch on the D.C. power supply and check the D.C. conditions without an input signal and record in table 1. 3.Select sine waves input and set the input signal frequency at 10 KHz constant and observe the input wave and output wave on the CRO and adjust the input amplitude such that the output is undistorted waveform. Calculate mid-band gain using AV = V0 (p-p) / Vin (p-p). 4.Keeping the input amplitude constant, vary the frequency from 50hz to 1Mhz and note down the corresponding output voltage (p-p) in the table 2. 5.Calculate gain in db and plot the frequency response curve and find the b)To find input impedance Zin: Vi Vi Vi Vi Vi Vi Vi Vi Vi Vi					without any Hz constant Ist the input e mid-band 1 50hz to able 2. and find the	
18FF	-38	 I.Connect DRB in series with the input signal and set it to ZERO. I.Set the signal frequency to 10 kHz and measure the output Vo (p-p). I.Set the DRB from 0 to Zin such that the output signal voltage reduces to half its value. This value of DRB at which the output signal reduces to half its initia value is the input Impedance Zin. C)To find output impedance Zo:)). luces to half half its initial	
18EE	L38		±i ↓			Copyright ©201	17. cAAS. All right	ts reserved.

7	Block, Circuit,	1.Connect DRB in parallel with the output and set it to MAXIMUM. 2.Set the signal frequency to 10 KHz and measure the output Vo (p-p). 3.Vary the DRB from maximum to minimum such that the output signal voltage reduces to half its value, this value of DRB at which the output signal reduces to half its value is the output impedance Zo.				
	Model Diagram, Reaction Equation, Expected Graph	V_{in} $R1$ RC C_{C1} $R1$ RC $S1100$ $R2$ $R2$ RE C_{E} R_{L}				
8	Observation Table, Look-up Table, Output	Table 1: D.C. Conditions: Parameter VRC VRE VBE VB				
		Theoretical 4.8 6 1.2 0.7 1.9 Practical				
		Table 2: Frequency response Vin=				
		F hzVo (p-p)AV = Vo (p-p) / Vin (p-p).AV in db = 20 *log AV50				
		1 MHZ				
9	Sample Calculations	DESIGN: Let VCC=12V; IC=4.5mA; β=100(SL100); VCE=12/6=6v				
		To find RE :Let VRE= VCC/10 =12/10=1.2v i.e., IERE = 1.2v Therefore RE= VRE / IE=1.2 / 4.5mA= 267W=270W(standard value)				
		To find RC:From the Collector-Emitter loop writing KVL we get				
		VCC- ICRC - VCE -VRE = 0 \ RC = (VCC - VCE - VRE) / IC (12-6-1.2)/4.5mA= 1.07KW (1KW std)				
		To find R1 and R2:				
		From the above biasing circuit VB= VBE + VRE = 0.7 + 1 = 1.7v				
		IC = β IB Or IB = IC / β = 4.5mA/100 = 0.04mA				
		Assuming 10IB flowing in R1 and 9IB flowing in R2				

LABORATORY PLAN - CAY	2019 BE-5-EE-SKIT-Ph5b1-F02-V2.2
	Now R1 = (VCC - VB) /I1 = (VCC-
	VB)/10IB R1 = 22.4 KW.
	R1 = 22 KW (standard value)
	Assume only IB out of 10IB flows through base, therefore remaining 9IB of current flows through R2. Therefore R2 = VB / (I1-IB) = VB/9IB
	R2 = 4.69KW R2 = 4.7 K W (standard)
	To find By-Pass Capacitor CE and Coupling Capacitor CC1 and CC2
	Bipass Capacitor is selected by taking lower cutoff frequency f=100Hz
	Let XCE = (1/10) RE at f = 100 HZ
	i.e. (1/2πfCE) = RE / 10
	\CE = (10/2π*100*270) = 59μF
	CE = 47 μF (Standard Value)
	Also use CC1= CC2 = 0.47 μF (Ceramic)
	Input Impedance (Zin):
	In order to calculate the input impedance first calculate the value of
	Zin (base) = β re, where re is the resistance of the emitter diode re @ 25 mV / IC
	= 25mV / 4.5mA = 5.56W
	Zin (base) = β re = 100 * 5.56 = 555.556W
	The input impedance of an amplifier is the input impedance seen by the a.c source driving the amplifier. Therefore the biasing resistor R1 and R2 are included as follows
	Zin = Zin (base) + (R1
	R2) Zin = 4.43KW
	Output impedance (Zo):
	The output impedance is given by
	Zo = RC RL
	Let RL = 1 KW.

\setminus	Zo	=	516.908	W

Voltage Gain AV:

Voltage gain is given by AV = (RC || RL)/ re = 516.908/5.56

AV= 92.96

10 Graphs, Outputs

qp			
2	 3 db		7
AV	B 17		/
	5 *	/	

		rredwardy
11	Results & Analysis	Determined the half power points, bandwidth, input and output impedances.
12	Application Areas	Audio Amplifiers.
13	Remarks	
14	Faculty Signature	
	with Date	

LABO	DRATORY PLAN - CAY 2019 Experiment No.:	4 Marks		Date	BE-5-EE-SKIT-Ph5b1	-F02-V2.2
	•			Planned	Conduct	ted
1	Title	DESIGN AND TI FREQUENCY O	ESTING OF B. F OSCILLATIO	JT - RC PHAS ON	E SHIFT OSCILLATO	R FOR GIVEN
2	Course Outcomes	Analyses & Des using hardware	ign of BJT-RC components	C phase shift	of oscillator for given	fequency using
3	Aim	design and test	a RC-phase	shift oscilla	or for a frequency of	f 10 kHz
4	Material / Equipment Required	Lab Manual/ ammeter, multi	CRO, Signal -meter, BJT.	generator,	capacitor, resistors,	power chord,
5	Theory, Formula Principle, Concept	RC phase shift phase shift net Here a fraction network before 600 so that the by the transisto 3600. The frequ Let us consider using I as the r across the capa and Vc. Hence degrees. Vo=IR, Vc=IXc Tan θπfCR) Therefore f = 1/	oscillator co work. The Ph of the outpu feeding bac total phase s or amplifier an uency of oscill a RC circuit. I reference vec acitor 900 be Vc is θ degre	onsists of a hase shift ne ut of the am k to the inpu- shift is 1800. nd there the lation is giver Let I be the c ctor, Vo is in thind as show ees ahead of	single transistor amp twork consists of throug ut. The phase shift in Another 1800 phase s total phase shift of h by fo = 1/[2π/6(RC)]. urrent flowing throug phase with I while wn in the figure. Vi is Vi and represents a	olifer and a RC ee RC sections. In a phase shift each section is shift is provided the oscillator is h R and C. Then Vc, the voltage the sum of Vo phase shift of 0
6	Procedure, Program, Activity, Algorithm, Pseudo Code	1.Rig up the circ 2.Switch on the in table 1 3.Obtain the o oscillation and theoretical valu	cuit as shown D.C. power su utput wavefo the amplitud e.	in the diagra upply and m orm on the de. Calculate	m. easure the D.C. condit CRO and measure e the frequency and	ions and record the period of I compare with
7	Block, Circuit, Model Diagram, Reaction Equation, Expected Graph					
8	Observation Table, Look-up Table, Output	Table 1: D.C. Condition	ns: Parameter Theoretical Practical	VRC VCE V1 4.8 6 1.1	VBE VB 0.7 1.9	
9	Sample Calculations	DESIGN: Let Vcc = 12V; VCE = 12/2=6V To find RE Let VRE = VCC	; IC = 4.5mA V C/10= 12/10=	; β = 100 (S =1.2	L100);	

LARC	DRATORY PLAN - CAY 2019	BE-5-EE-SKII-Ph5b1-F02-V2.2
		Therefore RE = VRE/IE ≈ VRE/IC
		= $1.2/4.5$ Ma = 267Ω (270 Ω std)
		To find RC
		From the Collector-Emitter loop writing KVL we getVCC- ICRC - VCE - VRE = 0
		RC = (VCC - VCE - VRE) / IC
		=(12-6-1.2)/4.5mA=1.07KW (1KW std)
10	Graphs, Outputs	
11	Results & Analysis	for (Theoritical) = 2kHz. for (practical) = kHz.
12	Application Areas	
13	Remarks	
14	Faculty Signature with Date	

LABO	DRATORY PLAN - CAY 2019				BE-5-EE-	SKIT-Ph5b1-F02-V2.2
#	Experiment No.:	6 Marks		Date Planned		Date Conducted
1	Title	SIMPLIFICATIO GATES /UNIVE	N, REALIZAT RSAL GATES	ION OF BO	OLEAN EXP	RESSIONS USING LOGI
2	Course Outcomes	Design & Analys the Boolean exp	ses of Full wa pression with	ave Rectifier: their truth ta	s using hard Ible using L[ware componentsRealiz D trainer kit.
3	Aim	To Simplify and Universal Gates	realize giver	n Boolean ex	oressions us	ing basic gates &
4	Material / Equipment Required	Lab Manual/ T	rainer kit, pov	wer chord, pa	atch chords,	IC's
5	Theory, Formula, Principle, Concept	Expressions: 1) A = XY + X 2) Y = ABC + 3) Y = (A+B+	Z + YZ ABC + ABC + A C) (A+B+C) (A+B	BC B+C)		
6	Procedure, Program, Activity, Algorithm, Pseudo Code	1.Identify the IC 2.Make the conr 3.Apply the diffe the output.	required and nections as sl erent combin	Place the IC hown in the o lations of inp	in the sock circuit diagra ut according	et of the trainer kit. am. g to truth table and verif
7	Block, Circuit, Model Diagram, Reaction Equation, Expected Graph	1) Realization Using Baric Gates	Z 1 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1	$\sum_{i=1}^{N} \frac{XY + \overline{XZ}}{2}$	Realization Using Universal (X)	nd) Cates
8	Observation Table, Look-up Table, Output	X Y Z 0 0 0 0 0 1 0 1 0 0 1 1 1 0 0 1 0 1 1 1 0 1 1 1	XY XZ A 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 1 0 1	=XY +XZ 0 1 0 1 0 1 0 0 1 1 1		
9	Sample Calculations	$A = XY + \overline{XZ} + YZ = XY + \overline{XZ} + ZZ = XY + \overline{XZ} + ZZ + ZY + ZZ + ZZ + ZZ + ZZ + ZZ + $	$YZ(X+\overline{X}) = XY + \overline{X}Z + X$	YZ+XYZ		
10	Graphs, Outputs	-				
11	Results & Analysis	Realizat	ion of Boolea	an Expressio	ns using trut	h table
12	Application Areas			I		
13	Remarks					
14	Faculty Signature					
	with Date					

LABC	PRATORY PLAN - CAY 2019)		1	BE-5-EE-SKIT-Ph5b1-F	02-V2.2
#	Experiment No.:	7 Marks		Date	Date	
			P	anned	Conducte	d
1	Title	REALIZATION	OF HALF/ FUL	L ADDER AN	ID HALF/ FULL	SUBTRACTOR
		USING LOGIC C	ATES /UNIVERS	SAL GATES		
2	Course Outcomes	Realize the Adc	lars & Substracto	rs with their tr	ruth table using LD	trainer kit
2	Aim	To realize half/	full adder and si	ibstractor usir	na logic gates /uni	versal gates
	Material /	l ab Manual / Tr	ainer kit nower (chord patch c	hords IC's	versut gates.
-	Fauipment Required			pateri e		
5	Theory. Formula.					
	Principle, Concept	A	Sum	A	S	177
		L HALF	UIT	в	FULL ADDER CIRC U IT	ITY
		В	Carry	о —		
		Half Adder and	I Full Adder Circ	uit. An adder	is a digital circuit	that performs
		addition of hun	nd produces two	ader adds tw	o binary digits call	ed as augend
		both inputs to	nroduce sum :	and AND ast	$r_{\rm a}$ is applied to $r_{\rm b}$	oth inputs to
		produce carry.	produce sum a	and AND gat		
				A		
		A HALF SUB	TRACTER Differen	ce	FULL SUBTRACTOR	— Diff
		B	Borroy	, ^в	CIRC U IT	— Borrow
		The full subtra	actor is a comb	pinational circ	cuit which is use	d to perform
		subtraction of t	nree input bits: ti	ne minuena , : iput bits: tho d	subtranend , and t lifforonco and borr	orrow in . The
6	Procedure Program	1 Identify the IC	required and Pla	co the IC in th	e socket of the tra	iner kit
	Activity, Algorithm	2.Make the con	nections as show	n in the circui	t diagram.	
	Pseudo Code	3.Apply the diffe	erent combinatio	ns of input ac	cording to truth tak	ble and verify
		the output.		·	0	,
7	Block, Circuit, Model	Circuit diagram: 1) Realization of half add	er using only NAND gates	2) Realization	of half adder using Ex- <mark>clusive</mark> OR and bas	ic gates
	Diagram, Reaction		p			
	Equation, Expected			A B	S=AUB	
	Graph		p			
			C=AB		C=AB	
			4	-		
		3) Realization of full adder usin	g Ex- <mark>clusive</mark> OR and basic gates	4) Realizatio	on of full adder using Two half adder's	
		A BC			-	SUM = A [⊕] B [⊕] C
				A		CARRY= AB+C(A+B)
				в—		Sum
				<u> </u>		
						Carry
				c—		
						1
		2) Realization of half subtractor us	ing Ex-clusive OR and basic gates			
			\oplus			
		в				
		V.	B=AB			
				3)	Realization of full subtractor using Ex-clusive OR and basi	e gates
				-	ABC	
						Diff
		4) Realization of full Subtra-	tor using Two half Subtractor.			
L	1	B B				
18EE	L38	7404	7404	Соруг	right ©2017. cAAS. All ri	ghts reserved.
		7408)	row		
		c	4708 7432			

8	Observation Table		Truth table for full adder:
	Look-up Table,	A B SUM CARRY 0 0 0 0	A B C SUM CARRY
	Output	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
			0 1 1 0 1 1 0 0 1 0
			$\begin{array}{cccccccccccccccccccccccccccccccccccc$
			Truth Table For Full subtractor
		Truth Table for Half Subtractor	
		A B Diff Borrow	
		$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
9	Sample Calculations	SUM CARRY	Sum: BC
		$A \xrightarrow{B 0 1} A \xrightarrow{B 0 1}$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
			$1 \bigcirc 0 \bigcirc 0 \qquad \qquad = A \bigoplus B \bigoplus C$
			Carry:
		SUM = AB + AB - CARRY = AB	A 00 01 11 10 Carry=AB+BC+AC
			$0 0 0 1 0 = \mathbf{AB} + \underline{\mathbf{C}}(\mathbf{A} + \mathbf{B})$
		Borrow: Difference:	Diff:
			A BC 00 01 11 10
		1 0 0 1 1 0	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
		Borrow = \overline{AB}	
		Borrow:	
		BC 00 01 11 10	
			Borrow = AB + BC + AC
		1 0 0 1 0	
10	Graphs Outputs		
11	Results & Analysis		
12	Application Areas		
13	Remarks		
14	Faculty Signature		
	with Date		

	DRATORY PLAN - CAY 2019)			BE-5-E	E-SKIT-Ph5b	01-F02-V2.2	
#	Experiment No.:	8 Marks		Date Planned		Date Conduc	e cted	
1	Title	Realization of parallel adder/Sub tractors using 7483 chip- BCD						
2	Course Outcomes	Realize the para	Realize the parallel adder/Sub tractors and BCD to Excess-3 code conversion					
-	Aim	with their truth t	with their truth table using LD trainer kit.					
3		b) BCD to EXCE	SS – 3 code c	conversion a	nd vice ve	3. rsa using 7	483	
4	Material / Equipment Required	Lab Manual/ Tr	ainer kit, pow	er chord, pa	tch chords	s, IC's		
5	Theory, Formula	IC PIN FUNCTION DIAGRAM		4 –Bit binary adder:				
	Principle, Concept	BCD To EXCESS – 3 (2 2 3 14_0 orp 5_0 Vec 12_0 GND	A4 A3 A2 // VCC 5 1 3 8 7 GND 12 14 Cout Vice Versa	11 B4 B3 B 0 16 4 IC-7483 15 2 6 54 53 5	2 61 13 6n 2 51		
		NOTE: BCD + 00 EX-3 - 0	011 = EX-3 K 011 = BCD K	eep C _{in} = 0 eep C _{in} = 1				
6	Procedure, Program, Activity, Algorithm, Pseudo Code	1.Make the conr 2.For Addition n of 4 bit to B. Ol Repeat the step 3.For Subtractio of B is obtained. 4.Verify the the _ve and differer 5.Repeat the ab	nections as sh nake Cin=0 ar oserve the O s for different n, Cin=1(A-B). difference a lice is in 2's Co ove steps for	nown in the find apply 4 b /P at S3 S2 t inputs and t By XOR-ing t S0,S1,S2,S3 omplement f different inp	g S1 S0 an tabulate th the i/p bit and Cou orm. If Co uts and ta	for A and a d Carry ge ne results. ts of B by 1 it. If Cout is ut is 1, diffe ibulate the	apply anothenerated at , 1's comple s 0, differe erence is +v result.	ner set Cout. ement nce is e.
7	Block, Circuit, Model	a)4-Bit Parallel adder/§	ubstractor:				1000441	
	Diagram, Reaction Equation, Expected Graph	A4 A3 A2 A1 +vcc 1 3 8 10 5 GND 12 - Cout	B4 B3 16 16 4 7483 15 2 54 53	B2 B1 7 11 13 6 9 52 S1	Cin When Cin = Cin =	0, adder 1, substractor		
8	Observation Table	1. To subtra	act a smaller	Number f	rom a lag	er numbe	r	
	Look-up Table Output	E B B 0 0 0 0 0 0 0 0 0 0 0 0 0	I/P BCD DAT/ B2 B1 0 0 0 1 0 1 1 0 1 1 1 1 0 0 0 1	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	O/P EX-3 D E2 0 1 1 1 1 0 0 0 0 0 0 1	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	arry.	
9	Sample Calculations	1001 ie.	= lager ⁽²⁾ 2's C	complement =	0111			
		0	$\frac{011}{111}$					
18EF	L38	$1 \qquad 1$ Cout = 0	010					 d.
		www.						а.

If the end carry is 0 the result is -ye & is in 2's complement form.

10	Graphs, Outputs	
11	Results & Analysis	
12	Application Areas	
13	Remarks	
14	Faculty Signature	
	with Date	

LABO	ABORATORY PLAN - CAY 2019 BE-5-EE-SKIT-Ph5b1-F02-V2.2				
#	Experiment No.:	9 Marks	F	Date Planned	Date Conducted
1	Title	REALIZATION	OF BINARY TO C	RAY CODE CC	NVERTER AND VICE-VERSA
2	Course Outcomes	Realize the Bin	ary to Gray code	& vice versa u	sing LD trainer kit.
3	Aim	To Realize Bina	ry To Gray Code	e Conversion ar	nd Vice Versa
4	Material /	Lab Manual/ T	rainer kit, power	chord, patch c	hords, IC's
	Equipment Required				
5	Theory, Formula,	C3 - B3			
-	Principle, Concept	⊕			
		$G_2 = B_3 \bigcirc B_2 = B_3 B_2$	- B3B2		
		$G1 = B1 \bigcirc B2 = B2B1$	+ B2B1		
		$G_0 = B_1 \oplus B_0 = B_1B_0$	+ B1B0		
		0	0.0	~ ~	<u>_</u>
		$\mathbf{B}_2 = \mathbf{G}_3 \left(\pm \right) \mathbf{G}_2$	$\mathbf{B}_1 = \mathbf{G}_1 \bigoplus \mathbf{G}_2 \bigoplus \mathbf{G}_3$	$\mathbf{B}_0 = \mathbf{G}_0(+) \mathbf{G}_1(+) \mathbf{G}_2$	(+) G ³
6	Procedure, Program,	1.Identify the IC	required and Pl	ace the IC in th	e socket of the trainer kit.
	Activity, Algorithm,	2.Make the con	nections as snov	wh in the circul	t diagram.
	Pseudo Code	3.Apply the diff	erent compination	ons of input ac	cording to truth table and verify
	Plack Circuit Made	ine output.			
/	Diock, Circuit, Model	Realization Of Binary To Gra	y Code Conversion Using Only X-O	r Gates Gray to Binary	code Conversion using <u>Only</u> X-OR Gates
	Equation Expected	^В З В В			
	Graph	2 1 0	G.	G3	G2 G1 60
			~	+	B ₃
			7486 G2	-	B2
					2 7486
			G 1		A TABLE B1
				5	
			7486 ° 。		
					748 ^{6-B0}
8	Observation Table		CDANCODE	b)DESIGN OF G	RAY CODE TO BINARY CODE CONVERTER
	Look-up Table	DINARI CODE	GRATCODE	Truth table:	
	Output	0 0 0 0		GR	AY CODE BINARY CODE
		0 0 0 1	0 0 0 1	Gi Gi	: Gi Ge B3 B2 Bi Be
		0 0 1 1	0 0 1 0	0 0	
		0 1 0 0	0 1 1 0	0 0	
		0 1 0 1	0 1 1 1	0 1	
		0 1 1 0	0 1 0 1	0 1	
		1 0 0 0	1 1 0 0	0 1	
		1 0 0 1	1 1 0 1	1 1	
		1 0 1 0	1 1 1 1	1 1	
		1 1 0 0	1 1 1 0	1 1	
		1 1 0 1	1 0 1 1	1 0	
		1 1 1 0	1 0 0 1	1 0	
			. 0 0 0		
a	Sample Calculations	K Man			
		K-Map	P. P.	P. D.	B ₁ B ₄
		G3 = B3 B31	B1B0	B3B2	B ₃ B ₂
			$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		
			0 0 0 0		
			$G_2 = B_3 \bigoplus B_2$	G1 =	$B_1 \bigoplus B_2 \qquad G_0 = B_1 \bigoplus B_0$
		B3 = G3			
		0.0	0.0		. G ₁ G ₅
		G3 G3 00 01 11	10 G3 G1 00	01 11 10 G	G; 00 01 11 10
		01 1 1	1 01	1 0 0	01 0 0 0 0
18EE	L38	11 0 0 0	0 11 0	0 1 1	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
		$B_2 = G_3 \bigoplus G$	$\mathbf{B}_1 = \mathbf{G}_1$	\oplus G ₂ \oplus G ₃	$\mathbf{B}_0 = \mathbf{G}_0 \bigoplus \mathbf{G}_1 \bigoplus \mathbf{G}_2 \bigoplus \mathbf{G}_3$

10	Graphs, Outputs	-
11	Results & Analysis	
12	Application Areas	
13	Remarks	
14	Faculty Signature	
	with Date	

	Evnorimont No.	10	Marka		Data	BE-5-EE-SKIT-Ph5b1-F02-V2.2	
#	Experiment No.:	10	Marks		Planned	Conducted	
1	Title	DE	DESIGN AND TESTING OF RING COUNTER/JOHNSON COUNTER				
2	Course Outcomes	Des	sign & Realiz	e the Ring &	Jogn counte	r using LD trainer kit.	
3	Aim	To	wiring and te	esting Ring co	ounter/Johns	son counter	
4	Material /	Lab	Manual/ Tr	ainer kit, pow	ver chord, pa	tch chords, IC 7495, 7404.	
	Equipment Required						
5	Theory, Formula,	A ri	ng counter	is a type of	counter com	posed of <u>flip-flops</u> connected into a	
	Principle, Concept	shif	t register, w	ith the outpu	ut of the last	flip-flop fed to the input of the first,	
		ma	king a "circul	ar" or "ring" s	tructure.		
		Ine	ere are two ty	/pes of ring c	counters:		
		A S	traignt ring c	ounter, also	known as a <u>(</u> bo first shift	one-not counter, connects the output	
		on	(or zoro) bit	around the r	ing linst shirt	register input and circulates a single	
			wisted ring	counter al	ing. so called s	witch-tail ring counter walking ring	
			inter Johnso	n counter (or Möbius co	when tak hing counter, watking hing	
		the	output of	the last shif	t register to	the input of the first register and	
		circ	ulates a stre	am of ones f	ollowed by z	eros around the ring.	
		A J	ohnson cour	nter is a mod	ified ring cou	inter, where the inverted output from	
		the	last flip flo	o is connect	ted to the ir	put to the first. The register cycles	
		thro	ough a seque	ence of bit-p	atterns. The I	MOD of the Johnson counter is 2n if n	
		flip	-flops are us	ed. The main	advantage o	of the Johnson counter counter is that	
		jt o	nly needs h	alf the num	ber of flip-fl	ops compared to the standard ring	
			inter for the :	same MOD.			
6	Procedure, Program,	1)C(onnections a	re made as p	ber the circuit	diagram of respective counter.	
	Activity, Algorithm,	2) ∨ ⊐ור	ake the outp	ND CLD of a	-flop high us		
	Pseudo Code	3/0	sable PRT A	i the clock of a	ulses verify t	counter. he truth table of respective counter	
7	Block Circuit Model	4/1	eep applying	g the clock p	uises, veniy i	he trath table of respective counter.	
′	Diagram. Reaction		PRT	PRT]	PRT] PRT]		
	Equation, Expected					<u></u>	
	Graph				▶_ ⊢≯ .		
			- <u> </u>		د ۹۲۴۴۰	2	
			CLR	CLR	dr dr		
			PRT	PRT			
			n l o				
			001	COX	Cart Cart		
8	Observation Table	Т	th table		b)DESI	GN OF JOHNSON COUNTER	
	Look-up Table	110	un table.		Truth	Table:	
	Output		0 1		1101		
			1 0	1 0 0			
			3 0				
			5 0	1 0 0		$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
			6 0	0 1 0		5 0 0 1 1 6 0 0 0 1	
			7 10				
9	Sample Calculations	-					
10	Graphs, Outputs	-					
11	Results & Analysis						
-		-					
12	Application Areas						
13	Remarks						
14	Faculty Signature	,					
	with Date						

Copyright ©2017	. cAAS. All ri	ahts reserved.
copyright @2017	. CAAS. All II	gints reserved.

#	Experiment No.:	11 Marks		Date	Date
	•			Planned	Conducted
1	Title	DESIGN AND TE	STING OF A	SEQUENCE	GENERATOR
2	Course Outcomes	Design & Realize	e the Sequen	nce generato	r using LD trainer kit.
3	Aim	Design and te	sting a Seq	luence gene	erator for the given sequence
		1101011			
4	Material /	Lab Manual/ Tr	ainer kit, pow	/er chord, pa	tch chords, IC's
	Equipment Required				
5	Principle, Concept	sequence gene prescribed sequence symbols or of b	rator is a dig uence of ou inary or q-ary	gital logic cir tputs. Each / logic levels	output will be one of a number of . Sequence generators are useful in a
		wide variety of a	coding and co	ontrol applic	ations.
6	Procedure, Program,	1.Mode control	is made '1'		
	Activity, Algorithm,	2.Parallel data (say 0001) is	applied to D	CBA and a Clock pulse is applied so
	Pseudo Code	that QDQCQBQ	A=0001		1 11
		3.Now mode of	ontrol is ma	ade zero an	d Clock pulse is applied such that
		'one' circulates	around.		1 11
7	Block, Circuit, Model	6 U20	113	ALC: NOTE: N	
	Equation, Expected		To t 10 10 10 10 10 10 10 10 10 10	the o/p of ainer kit	
	Graph				
8	Observation Table,	0p 0c	0 0	A Y=DS	
	Output				
				0	
		0 1			
		1 🖌 0		1	
9	Sample Calculations	$D_S = Q\overline{3} + Q\overline{2} + Q\overline{2}$	$Q\overline{0} = Q3\overline{Q2}Q0$		
10	Graphs, Outputs	-			
11	Results & Analysis				
12	Application Areas	Sequence gene applications	erators are u	useful in a	wide variety of coding and control
13	Remarks				
14	Faculty Signature with Date				

Page # 26 / 29

LABO	DRATORY PLAN - CAY 2019	BE-5-EE-SKIT-Ph5b1-F02-V2.2
9	Sample Calculations	MOD-8 Synchronous Up Counter
		Excitation Table
		Present state Next State Flip flop inputs J2 K2
		$\begin{array}{c c c c c c c c c c c c c c c c c c c $
		$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
		1 1 1 0 0 0 X 1 X 1 X 1 Je Ko
		4 <u>1 × × 1</u> J0=1 K0=1
		MOD 8 Synahranaus Dawn Cauntar
		Excitation Table $\alpha_{0}^{000} \alpha_{0}^{010} \alpha_{0}^{010}$
		Present state Next State Flip flop inputs
		$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
		1 1 0 1 0 1 Х 0 Х 1 1 Х л кт
		$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
		0 0 0 1 1 1 X 1 X 1 X JO KO
		vo~1 110~1
10	Graphs, Outputs	-
11	Results & Analysis	
12	Application Areas	
13	Remarks	
14	Faculty Signature	
	with Date	